星期日, 2月 08, 2009

教學誌

最近常常抓幾個題目來教學,大概就是學測、指考得題目;其實解題最重要的觀念,國一就有教過了喔。

例如93指的鹹蛋超人題組、97指的比例尺地圖縮張、忘記年度的台灣歷史(說國語、禁拜土地公etc.)

怎麼辦?是不是他們很少處在逆境,寫題目的時候總覺得少了些「奸巧」。例如:

某區域1/50000需要15張才能畫完,在希望精簡的原則下,想要縮減成為5張,該選擇怎樣的比例尺?
(A)1/90000(B)1/120000(C)1/150000(D)1/200000

如果知道這題在考《 面積比= 比例尺的平方比 》 那就會很好處理。
處理方式如下:
從15變成5張→ 面積差3倍 → 比例尺差√3倍。
面積 長度


C選項比例尺差了3倍,面積比為平方比,所以是3*3=9倍;遠遠超過我們需要的 面積差3倍。
選擇A即可。 9萬可以看成10萬不要緊,比例尺差2倍,面積就差4倍。於是足以涵蓋,就選他。

也有學生很天兵,用了笨方法。我一向都鼓勵笨方法,因為社會科是比誰對得多,而不是誰交卷快。但是他也太天了…

如果他像我一樣奸巧,我會先全部一起約掉4個0再去進行數學的火拼…

火拼的想法大概是這樣:
先假設每一張都是1*1的面積。那麼原本1/50000下15張畫完的面積就會是
「1*50000*1*50000*15」會等於 X*X*5 算出來,大約是1/86603 A能滿足且最接近。

當然,如果是我,我會把式子列成… 1*5*1*5*3會等於 X*X 一樣很快。
如果能懂觀念,連筆都不用動。不懂觀念,動筆國一也能算出來。